
Heartbleed - A wake-up call
TLP GREEN | Info Note | Final | April 2014

© European Union Agency for Network and Information Security (ENISA), 2014 01

Heartbleed - A wake-up call

1 Introduction
Last week the entire web discovered the existence of the so called “Heartbleed” vulnerability affecting one
of most popular mechanisms used to secure communication with web sites. Starting with the first open
announcements on 07th of April 2014, news about this security hole triggered the interest and concern of
more or less everybody online. The publication created panic on the Internet due to its simplicity and effi-
ciency. An attacker could remotely retrieve information from the memory of computers using the
Transport Layer Security (TLS) features of OpenSSL, that is designed to provide authentication and encryp-
tion services for securing communication with web sites. This means that passwords, session cookies used
in online authentication and private keys were potentially exposed for everyone to see, without the need
for authentication.

As expected attackers started to try to find their way into vulnerable systems as soon as proof of concept
tools exploiting the vulnerability were made available. Moreover as more information started to emerge,
more impressively, it became clear that this vulnerability got unnoticed for almost 2 years putting under
discussion the entire security life chain.

It also turned out that numerous, both commercial and non-commercial products, services and applica-
tions that utilise the faulty code could remain exposed to this vulnerability for an unknown period of time.
The popularity of this specific implementation has led to the situation where pieces of this faulty code,
even if labelled “open source”, may be implemented in closed projects, products, or applications, which
could be unfixed for a longer period of time.

Even though some major advisories and patches were quickly made available. Announcement to users and
customers by affected services or suppliers were not in all cases handled sufficiently and transparent.
Cisco, Blue Coat, Tor, VMware, and many others, sent out communication to their customers. Other ser-
vices and companies have not issued an advisory or a patch until today.

2 The underlying mistake
(CAREFUL: some techie information ahead!)

The cause of the problem can be traced down to un-validated user input. Basically, the heartbeat feature
of TLS is designed to keep a connection alive, one party in the communication provides arbitrary infor-
mation and the other sends it back.

OpenSSL used a user-provided length field to allocate the memory buffer in which it copies the information
provided by the initiating party. Unfortunately, there was no check if the ‘length’ field that was provided
by the user was indeed the length of the data that was originally sent. When there was a mismatch be-
tween a small amount of data sent, but a big amount announced, OpenSSL then essentially returned infor-
mation coming from the computer’s memory. This information could include passwords, session cookies
used in online authentication and private keys without the need for authentication.

As simple as it can sound, the fix that was implemented consisted simply in adding this consistency check
before allocating memory.

http://heartbleed.com/
https://www.openssl.org/news/secadv_20140407.txt
http://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20140409-heartbleed
http://kb.bluecoat.com/index?page=content&id=SA79
%5bOnline%5d.%20Available:%20https:/blog.torproject.org/blog/tor-browser-354-released
http://kb.vmware.com/selfservice/search.do?cmd=displayKC&docType=kc&docTypeID=DT_KB_1_1&externalId=2076225.
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=96db9023b881d7cd9f379b0c154650d6c108e9a3

Heartbleed - A wake-up call
TLP GREEN | Info Note | Final | April 2014

© European Union Agency for Network and Information Security (ENISA), 2014 02

3 Failure of the Quality Assurance process
The faulty code was submitted to the project by a volunteer programmer. As it is usual with open source
projects, many programmers can submit code, but this code is then checked by maintainers who are re-
sponsible for Quality Assurance (QA). In this case, this process failed: the maintainer did not spot the bug,
and the faulty code went live without notice.

The root cause is thus the combination of:

1. A programming mistake by lack of validation of input submitted by users.
2. In addition the use of insecure memory management routines, which is a problem caused by the

development environment.
3. A failure in the QA process.

4 Other common programming mistakes
The Open Web Application Security Project (OWASP) ”Top programming mistakes” lists the most common
programming mistakes. While it focuses mainly on web application programming, it still encompasses ”Un-
validated user input” even before other more famous mistakes such as ”faulty access control” and ”buffer
overflows”. In 2014 we would expect that Quality Assurance and code review would avoid such simple vul-
nerabilities. Unfortunately major problems today include code injection, cross-site-scripting and –still –
faulty authentication and session management.

5 Recommendations

5.1 Methodology
This problem could have been avoided by following programming guidelines that have been known for
years, especially: all user input must be considered as untrusted until properly checked for consistency and
validity. This is still nowadays a common programming mistake and points to a fundamental lack of secu-
rity awareness on developer level. Our first recommendation is therefore to use secure development
methodologies and increase the awareness of developers about programming mistakes and how to
avoid them.

5.2 Coding standards
The C programming language is the most used programming language for systems-level development. It
exists since decades, was developed with performance in mind, not security. It does not protect the pro-
grammers against mistakes or unforeseen circumstances. Security is not a feature of the libraries provided
by the language and its development environment. It is too easy to introduce mistakes into the code in
small projects, and even easier in huge projects with millions of lines of code (and tight deadlines). Our
second recommendation is to follow and enforce secure coding principles, like those proposed by
CERT/CC and others.

5.3 Quality assurance
Before source code is used in a product, or an application, it is strongly recommended to review and test
the code, and if necessary to make security improvements, even if that would influence the publication
date. This is also true for open source project, were a common motto is that “given enough eyeballs, all
bugs are shallow”. The Heartbleed case shows that in practice, open source software, like any software,
needs to go through well-defined quality assurance processes. Our third recommendation: any software
project must include security in the whole development process.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Data_Validation
“CERT%20Coding%20Standards,”%20%5bOnline%5d.%20Available:%20https:/www.securecoding.cert.org/confluence/display/seccode/CERT+Coding+Standards

Heartbleed - A wake-up call
TLP GREEN | Info Note | Final | April 2014

© European Union Agency for Network and Information Security (ENISA), 2014 03

5.4 Vulnerability communication
The communication process regarding the Heartbleed vulnerability has been, and still is, too fragmented.
Vendor response is not synchronised and does not always provide actionable information. Also the level of
detail of communicated information varies greatly from vendor to vendor, as is the audience addressed.
Some vendors only provide information for service providers, others only for website owners, and infor-
mation for the public at large is left to the mass media without guidance. Our fourth recommendation: es-
tablish standards, guidelines and (where appropriate) coordination for practical, non-headline-seeking
information sharing regarding serious vulnerabilities.

6 About “Info Notes” from ENISA
With the “Info Notes” series ENISA aims at giving the interested reader some background and recommen-
dations about NIS related topics. The background and recommendations are derived from past experiences
and common sense, and should be taken as starting points for discussions on possible course of action by
relevant stakeholders. Feel free to get in touch with ENISA to discuss or inquire more information on the
“Info Notes” series (cert-relations@enisa.europa.eu).

